手机浏览器扫描二维码访问
但他的课堂又不能完全脱离实际。
所以楚皓最终在高数课本中选取了一些比较经典又比较难懂的问题作为今天的上课内容。
已知函数f(x)=ax+bx+c(a>0)的图像在点(1,f(1))处的切线方程为y=x-1.
(1)用a表示b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围。
将题目板书出来,楚皓看着台下的学生说道:
“第一问送分题,大家应该没有任何难度吧?”
接着众人的脑袋都犹如小鸡啄米一般点了起来。
显然第一题大家都会,那么难住众人人的自然便是第二问了。
解:(1)f’(x)=a-bx^2,
∵f’(1)=a-b=1,∴b=a-1.
又f(1)=a+b+c=2a+c-1,
将(1,2a+c-1)代入y=x-1得,2a+c-1=0,
∴c=1-2a.
由(1)得f(x)=ax+(a-1)x-2a+1(a>0),
当ax+(a-1)x-2a+1-lnx≥0时,成立.
不等式可转化为:a(x-1)^2≥xlnx-x+1.
当x=1时,不等式成立(左右两边相等),从而结论成立;
当……
记h(x)=(xlnx-x+1)(x-1)2,则
则h’(x)=)=(2(x-1)-(x+1)lnx)(x-1)^3。
“同学们这里运用了商的求导公式,需要仔细化简,大家注意听。”
∵lnx≥2(x-1)(x+1),(x≥1)
“大家看好,这是这道题最关键的一步,这是一个关于lnx的不等式,这个不等式并不太常用,一定要好好掌握起来。”
∴h’(x)≤0。
【将lnx缩放成2(x-1)(x+1),分子的减数变小,分式变大,分式化简之后等于0】
即h(x)在[1,+∞)上单调减.
“因为h(1)不存在,所以h(x)在[1,+∞)的最大值在无限接近x=1的地方,因此要用极限求这个最大值。”
“大家,都听明白了吗?”
武侠之独孤九剑 重生巴西做财阀 牢笼世界之不死天功传承者 李秀成苏晓萌 你不是地球人 悍妾当家 通天圣主 我真的不是你们的陛下 平步青云 穿越成为吸血鬼会梦到主神空间吗 校园贴心高手 重生最强特种兵 末世之绝色军娘 发个微信去三国 死后至上 美女上司的贴身兵王(笑笑星儿) 黑心王爷,跪安吧 我可不想当世界之主 人生如一书 你的爱如星光阮白和慕少凌
...
林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...
元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...
下载客户端,查看完整作品简介。...
别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...
作为普通人的许易穿越到神学院的世界,表示压力山大!然而许易意外激活身体里的无限系统,得而穿越各种不同的幻想世界,影视,动漫,小说一切应有尽有。许易面色淡漠,仰视苍天,忽然开口我要这天,再遮不住我眼。我要这地,再埋不了我心。要这众生,都明白我意。要那诸佛,全都烟消云散。苍天mdzz,老子招你惹你啦!...